Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; : e2310402, 2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38342667

RESUMEN

Functional nanostructures build up a basis for the future materials and devices, providing a wide variety of functionalities, a possibility of designing bio-compatible nanoprobes, etc. However, development of new nanostructured materials via trial-and-error approach is obviously limited by laborious efforts on their syntheses, and the cost of materials and manpower. This is one of the reasons for an increasing interest in design and development of novel materials with required properties assisted by machine learning approaches. Here, the dataset on synthetic parameters and optical properties of one important class of light-emitting nanomaterials - carbon dots are collected, processed, and analyzed with optical transitions in the red and near-infrared spectral ranges. A model for prediction of spectral characteristics of these carbon dots based on multiple linear regression is established and verified by comparison of the predicted and experimentally observed optical properties of carbon dots synthesized in three different laboratories. Based on the analysis, the open-source code is provided to be used by researchers for the prediction of optical properties of carbon dots and their synthetic procedures.

2.
J Phys Chem Lett ; 14(50): 11522-11528, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38091348

RESUMEN

The formation of red-emissive optical centers in carbon dots based on citric acid and formamide was investigated by varying the synthesis parameters with focus on finding optimal─necessary and sufficient─amount of precursors to decrease byproduct amount and to increase the chemical yield of red-emissive carbon dots. The emission is observed at 640 nm excited at 590 nm and quantum yield reaches up 19%. A high chemical yield of carbon dots of 26% was achieved at an optimal molar ratio of citric acid to formamide of 1:4.

3.
Nanomaterials (Basel) ; 12(19)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36234443

RESUMEN

Today, the development of nanomaterials with sensing properties attracts much scientific interest because of the demand for low-cost nontoxic colloidal nanoprobes with high sensitivity and selectivity for various biomedical and environment-related applications. Carbon dots (CDs) are promising candidates for these applications as they demonstrate unique optical properties with intense emissions, biocompatibility, and ease of fabrication. Herein, we developed synthesis protocols to obtain CDs based on o-phenylenediamine with a variety of optical responses depending on additional precursors and changes in the reaction media. The obtained CDs are N-doped (N,S-doped in case of thiourea addition) less than 10 nm spherical particles with emissions observed in the 300−600 nm spectral region depending on their chemical composition. These CDs may act simultaneously as absorptive/fluorescent sensing probes for solvent polarity with ∆S/∆ENT up to 85, for ∆ENT from 0.099 to 1.0 and for pH values in the range of 3.0−8.0, thus opening an opportunity to check the pH in non-pure water or a mixture of solvents. Moreover, CDs preserve their optical properties when embedded in cellulose strips that can be used as sensing probes for fast and easy pH checks. We believe that the resulting dual-purpose sensing nano probes based on CDs will have high demand in various sensing applications.

4.
Nanomaterials (Basel) ; 12(3)2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-35159888

RESUMEN

Carbon dots (CDs) with an emission in the near infrared spectral region are attractive due to their promising applications in bio-related areas, while their fabrication still remains a challenging task. Herein, we developed a template-assisted method using porous silica microspheres for the formation of CDs with optical transitions in the near infrared. Two organic dyes, Rhodamine 6G and IR1061 with emission in the yellow and near infrared spectral regions, respectively, were used as precursors for CDs. Correlation of morphology and chemical composition with optical properties of obtained CDs revealed the origin of their emission, which is related to the CDs' core optical transitions and dye-derivatives within CDs. By varying annealing temperature, different kinds of optical centers as derivatives of organic dyes are formed in the microsphere's pores. The template-assisted method allows us to synthesize CDs with an emission peaked at 1085 nm and photoluminescence quantum yield of 0.2%, which is the highest value reported so far for CDs emitting at wavelengths longer than 1050 nm.

5.
Nanoscale ; 13(5): 3070-3078, 2021 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-33522554

RESUMEN

The optical properties of chemically synthesized carbon dots (CDs) can be widely tuned via doping and surface modification with heteroatoms such as nitrogen, which results in a range of potential applications. Herein, two most commonly used synthesis approaches, namely, solvothermal and microwave-assisted thermal treatments, have been used for the preparation of CDs from phloroglucinol using three different nitrogen containing solvents, namely, ethylenediamine, dimethylformamide, and formamide. Based on the analysis of the morphology and optical properties, we demonstrate the tenability of the CD appearance from amorphous or well-carbonized spherical particles to onion-like ones, which is controlled by solvent polarity, whereas the thermal treatment conditions mostly influence the degree of N-doping and the nature of emissive centers of CDs formed. The findings of this study expand the toolkit of the available CDs with variable morphology and energy structure.

6.
Nanomaterials (Basel) ; 11(2)2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33535584

RESUMEN

Carbon dots (CDs) are an attractive class of nanomaterials due to the ease of their synthesis, biocompatibility, and superior optical properties. The electronic structure of CDs and hence their optical transitions can be controlled and tuned over a wide spectral range via the choice of precursors, adjustment of the synthetic conditions, and post-synthetic treatment. We summarize recent progress in the synthesis of CDs emitting in different colors in terms of morphology and optical properties of the resulting nanoparticles, with a focus on the synthetic approaches allowing to shift their emission to longer wavelengths. We further consider formation of CD-based composite materials, and review approaches used to prevent aggregation and self-quenching of their emission. We then provide examples of applications of CDs in optoelectronic devices, such as solar cells and light-emitting diodes (LEDs) with a focus on white LEDs.

7.
Nanomaterials (Basel) ; 10(6)2020 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-32486299

RESUMEN

Luminescent composites based on entirely non-toxic, environmentally friendly compounds are in high demand for a variety of applications in photonics and optoelectronics. Carbon dots are a recently developed kind of luminescent nanomaterial that is eco-friendly, biocompatible, easy-to-obtain, and inexpensive, with a stable and widely tunable emission. Herein, we introduce luminescent composites based on carbon dots of different chemical compositions and with different functional groups at the surface which were embedded in a nanoporous silicate glass. The structure and optical properties of these composites were comprehensively examined using electron microscopy, Fourier transform infrared transmission, UV-Vis absorption, and steady-state and time-resolved photoluminescence. It is shown that the silicate matrix efficiently preserved, and even enhanced the emission of different kinds of carbon dots tested. The photoluminescence quantum yield of the fabricated nanocomposite materials reached 35-40%, which is comparable to or even exceeds the values for carbon dots in solution.

8.
Nanoscale ; 12(2): 602-609, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31828268

RESUMEN

Carbon dots (CDs) are luminescent nanomaterials, with potential use in bioimaging and sensorics. Here, the influence of the surrounding solvent media on the optical properties of CDs synthesized from the most commonly employed precursors, namely citric acid and ethylenediamine, is investigated. The position of optical transitions of CDs can be tuned by the change of pH and solvent polarity. The most striking observation is related to the interaction of CDs with chlorine containing solvents, which results in resolving a set of narrow peaks within both the absorption and PL bands, similar to those observed for polycyclic aromatic hydrocarbons or organic dyes. We assume that the chlorine containing molecules penetrate the surface layers of CDs, which results in an increase of the distance between the luminescent centers; this correlates well with an enhanced D-band in their Raman spectra. A model of CDs composed of a matrix of hydrogenated amorphous carbon with the inclusions of sp2-domains formed by polycyclic aromatic hydrocarbons and their derivatives is suggested; the latter are stacked ensembles of the luminophores and are considered as the origin of the emission of CDs.

9.
Nanotechnology ; 30(46): 465705, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31422943

RESUMEN

The understanding of the physical mechanisms of the nanoobjects interaction within the nanostructured complex materials is one of the main tasks for the development of novel materials with tunable properties. In this work, we develop a formation procedure of the colloidal complexes based on alloyed CdZnSe/ZnS quantum dots and gold nanoparticles where the various mercaptocarboxylic acids are used as the binding molecules. The QD photoluminescence enhancement (up to ×3.1) can be achieved by the control of the interparticle distance in colloidal solutions. We provide a detailed discussion on the influence of the linking molecules on the nanoparticle complexes optical parameters through the steady-state and time-resolved spectral measurements.

10.
Sci Rep ; 9(1): 617, 2019 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-30679451

RESUMEN

Quantum dots (QDs) have been envisaged as very promising materials for the development of advanced optical sensors. Here we report a new highly porous luminescent material based on colloidal QDs for potential applications in optical sensing devices. Bulk flower-like porous structures with sizes of hundreds of microns have been produced by slow destabilization of QD solution in the presence of a non-solvent vapor. The porous highly luminescent material was formed from CdSe QDs using the approach of non-solvent destabilization. This material demonstrated a 4-fold decrease in PL signal in the presence of the ammonia vapor. The relationship between the destabilization rate of QDs in solution and the resulting morphology of structural elements has been established. The proposed model of bulk porous flower-like nanostructured material fabrication can be applied to nanoparticles of different nature combining their unique properties. This research opens up a new approach to design novel multi-component composite materials enabling potential performance improvements of various photonic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...